Force per cross-sectional area from molecules to muscles: a general property of biological motors

نویسندگان

  • Jean-Pierre Rospars
  • Nicole Meyer-Vernet
چکیده

We propose to formally extend the notion of specific tension, i.e. force per cross-sectional area-classically used for muscles, to quantify forces in molecular motors exerting various biological functions. In doing so, we review and compare the maximum tensions exerted by about 265 biological motors operated by about 150 species of different taxonomic groups. The motors considered range from single molecules and motile appendages of microorganisms to whole muscles of large animals. We show that specific tensions exerted by molecular and non-molecular motors follow similar statistical distributions, with in particular, similar medians and (logarithmic) means. Over the 10(19) mass (M) range of the cell or body from which the motors are extracted, their specific tensions vary as M(α) with α not significantly different from zero. The typical specific tension found in most motors is about 200 kPa, which generalizes to individual molecular motors and microorganisms a classical property of macroscopic muscles. We propose a basic order-of-magnitude interpretation of this result.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Molecules, muscles, and machines: universal performance characteristics of motors.

Animal- and human-made motors vary widely in size and shape, are constructed of vastly different materials, use different mechanisms, and produce an enormous range of mass-specific power. Despite these differences, there is remarkable consistency in the maximum net force produced by broad classes of animal- and human-made motors. Motors that use force production to accomplish steady translation...

متن کامل

The masticatory system under varying functional load. Part 1: Structural adaptation of rabbit jaw muscles to reduced masticatory load.

Skeletal muscle fibres can change their myosin heavy-chain (MyHC) isoform and cross-sectional area, which determine their contraction velocity and maximum force generation, respectively, to adapt to varying functional loads. In general, reduced muscle activity induces transition towards faster fibres and a decrease in fibre cross-sectional area. In order to investigate the effect of a reduction...

متن کامل

Muscle strength and cross-sectional area in man: a comparison of strength-trained and untrained subjects.

This study has examined muscle strength and cross-sectional area in a group of 35 healthy untrained male subjects and 8 subjects who had been engaged in a strenuous weight-training programme. The maximum voluntary knee extension force which could be produced by the untrained subjects was 742 +/- 100 N (mean +/- SD). The trained subjects could produce a significantly (p less than 0.001) greater ...

متن کامل

Scaling of maximum net force output by motors used for locomotion.

Biological and engineered motors are surprisingly similar in their adherence to two or possibly three fundamental regimes for the mass scaling of maximum force output (Fmax). One scaling regime (Group 1: myosin, kinesin, dynein and RNA polymerase molecules; muscle cells; whole muscles; winches; linear actuators) comprises motors that create slow translational motion with force outputs limited b...

متن کامل

The highly efficient holding function of the mollusc 'catch' muscle is not based on decelerated myosin head cross-bridge cycles.

Certain smooth muscles are able to reduce energy consumption greatly when holding without shortening. For instance, this is the case with muscles surrounding blood vessels used for regulating blood flow and pressure. The phenomenon is most conspicuous in 'catch' muscles of molluscs, which have been used as models for investigating this important physiological property of smooth muscle. When the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 3  شماره 

صفحات  -

تاریخ انتشار 2016